Как сделать свой бизнес успешным
  • Главная
  • Увольнение
  • Стальной вал круглого поперечного сечения. Построение эпюр крутящих моментов и определение диаметра вала из условий прочности и жесткости при кручении. Определяем реактивный момент, возникающий в жесткой заделке

Стальной вал круглого поперечного сечения. Построение эпюр крутящих моментов и определение диаметра вала из условий прочности и жесткости при кручении. Определяем реактивный момент, возникающий в жесткой заделке


2. Кручение.

2.4. Построение эпюр угловых перемещений при кручении.

Имея формулы для определения деформаций и зная условия закрепления стержня, нетрудно определить угловые перемещения сечений стержня и построить эпюры этих перемещений. Если имеется вал (т.е. вращающийся стержень), у которого нет неподвижных сечений, то для построения эпюры угловых перемещений принимают какое-либо сечение за условно неподвижное.

Рассмотрим конкретный пример (рис. 2.12, а). На рис. 2.12, б дана эпюра Тк .

Примем сечение в точке А за условно неподвижное. Определим поворот сечения В по отношению к сечению А.

Где ТАВ - крутящий момент на участке АВ; lАВ - длина участка АВ.

Примем следующее правило знаков для углов поворота сечений: углы будем считать положительными, когда сечение поворачивается (если смотреть вдоль оси справа налево) против часовой стрелки. В данном случае будет положительным. В принятом масштабе отложим ординату (рис. 2.12, в). Полученную точку К соединяем прямой точкой Е, так как на участке АВ углы изменяются по закону прямой линии . Вычислим теперь угол поворота сечения С по отношению к сечению В. Учитывая принятое правило знаков для углов закручивания, получаем

Так как сечение В не неподвижное, то угол поворота сечения С по отношению к сечению А равен

Угол закручивания может получиться положительным, отрицательным и, в частном случае, равным нулю.

Предположим, что в данном случае угол получился положительным. Тогда, отложив эту величину в принятом масштабе вверх от эпюры, получим точку М. Соединяя точку М с точкой К, получим графмк углов закручивания на участке ВС. На участке CD скручивания не происходит, так как крутящие моменты на этом участке равны нулю, поэтому там все сечения поворачиваются на столько же, на сколько поворачивается сечение С. Участок MN эпюры здесь горизонтален. Читателю предлагается убедиться, что если принять за неподвижное сечение В, то эпюра углов закручивания будет иметь вид, представленный на рис. 2.12, г.

Пример 2.1. Определить диаметр стального вала, вращающегося с угловой скоростью W = 100 рад/с и передающего мощность N = 100 кВт. Допускаемо напряжение = 40 МПа, допускаемый угол закручивания = 0,5 град/м, G = 80000 МПа.

Решение. Момент передаваемый валом, определяется по формуле

T = N/W = 100 000 / 100 = 1000 Н * м

Крутящий момент во всех поперечных сечениях вала одинаков

Tк = Т = 1000 Н * м = 1 кН * м = 0,001 МН * м.

Диаметр вала по прочности определяем по формуле (2.15)

По формуле (2.24) определяем диаметр вала из условия жесткости

Диаметр вала в данном случае определяется из условия жесткости и должен быть принят равным d = 52 мм.

Пример 2.2. Подобрать размеры сечения трубчатого вала, передающего момент Т = 6 кН * м, при соотношении диаметров с = d/D = 0,8 и допускаемом напряжении = 60 МПа. Сравнить вес этого трубчатого вала с валом равной прочности сплошного сечения.

Ответ. Размеры трубчатого вала: D = 9,52 см, d = 7,62 см. Плошадь сечения Ат = 25,9 квадратных см. Диаметр вала сплошного сечения d1 = 8 см. Площадь сечения Ас = 50,2 квадратных см. Масса трубчатого вала составляет 51% от массы сплошного вала.

Определить из условий прочности необходимые размеры диаметров редукторного ступенчатого вала. Схема нагружения вала дана на рис. 1.

Исходные данные:

Мкр=0,2 кН·м.

a=30 мм.; b=60 мм.; c=100 мм.

D1=70 мм.; D2=120 мм.

[?]p=120 МПа.

Требуется:

1. Вычертить в масштабе заданную схему вала с указанием размеров и величин нагрузок.

2. Определить окружные Р и радиальные усилия Т, приняв соотношение между ними Т=0.36Р.

3. Построить эпюры изгибающих моментов в вертикальной и горизонтальной плоскостях.

4. Построить эпюру суммарных изгибающих моментов.

5. Построить эпюру крутящих моментов.

6. Используя энергетическую теорию прочности, определить диаметры вала на отдельных участках и округлить их до стандартных размеров.

7. Вычертить эскиз.

1. Заданная схема вала представлена на рисунке 1.

2. Определим окружные Р и радиальные усилия Т.

Крутящий момент на валу вызывают силы Р1 и Р2.

Приведем силу P1 к центру тяжести сечения вала: тогда пара сил с моментом

вызывает кручение, а сила P - изгиб вала в вертикальной плоскости.

В свою очередь, пара сил с моментом М2 =Р2D2/2 вызывает кручение в противоположную сторону, а сила в центре тяжести сечения вызывает изгиб.

Найдем окружные силы Р1 и Р2:

Радиальные усилия Т определим по формуле:

3. Построим эпюры изгибающих моментов.

Эпюра от действия сил в горизонтальной плоскости.

Определим опорные реакции:

Проверка:

1-ый участок (0

при z=0,1 M=0,002 кН·м.

2-ой участок (0

M=RB·(0,1+z)+Т2·z.

при z=0 M=0,002 кН·м, при z=0,06 M=0,043 кН·м.

3-ий участок (0

при z=0,03 M=0,043 кН·м.

Эпюра от действия сил в вертикальной плоскости.

Проверка:

Строим эпюру изгибающих моментов.

1-ый участок (0

при z=0,1 M=0,25 кН·м.

2-ой участок (0

M=RB·(0,1+z)-Р2·z.

при z=0 M=0,25 кН·м

при z=0,06 M=0,2 кН·м.

3-ий участок (0

при z=0,03 M=0,2 кН·м.

Построим эпюру суммарных изгибающих моментов. Для этого нужно рассмотреть несколько сечений вала и определить в них суммарный изгибающий момент по формуле:

Отсюда получаем:

Моменты внутренних сил или крутящих моментов находят методом сечений. Сначала разбивают вал на участки (между соседними шкивами)

затем на каждом участке выбирают произвольное сечение. Крутящий момент в этом сечении равен алгебраической сумме моментов внешних сил, лежащих по одну сторону от сечения. В пределах каждого участка крутящий момент постоянен. Знак крутящего момента определяют по знаку внешних моментов: положительным считается направление против движения часовой стрелки при взгляде на сечение вала вдоль его оси. При этом можно рассматривать любую часть вала по одну сторону от сечения.

1) Для вала на рис.2 крутящие моменты по участкам:

1-ый участок:

2-ой участок:

М=0,2 кН·м.

3-ий участок:

Полученные эпюры изображены на рисунке 2.

Рисунок 2 - Эпюры изгибающих и крутящих моментов.

Для подбора сечения применяем энергетическую гипотезу прочности:

Принимаем d1=70 мм., d2=120 мм.

КРУЧЕНИЕ

Последовательность решения задачи

1. Определить внешние скручивающие моменты по формуле

М= Р

где Р - мощность,

ω - угловая скорость.

2. Так как при равномерном вращении вала алгебраическая сумма приложенных к нему внешних скручивающих (вращающих) моментов равна нулю определить уравновешивающий момент, используя уравнение равновесия

М i z = 0

3. Пользуясь методом сечений, построить эпюру крутящих моментов по длине вала.

4. Для участка вала, в котором возникает наибольший крутящий момент, определить диаметр вала круглого или кольцевого сечения из условия прочности и жесткости. Для кольцевого сечения вала принять соотношение диаметров

где d о - внутренний диаметр кольца;

d - наружный диаметр кольца.

Из условия прочности:

Из условия жесткости:

где M zmax - наибольший крутящий момент;

W p - полярный момент сопротивления кручению;

[τ кр ] - допускаемое касательное напряжение

где J p - полярный момент инерции сечения;

G - модуль упругости при сдвиге;

[φ о ] - допускаемый угол закручивания сечении

Сечение вала - круг

Необходимый по прочности диаметр вала:

Необходимый по жесткости диаметр вала:

Сечение вала - кольцо

Необходимый по прочности наружный диаметр кольца:

Необходимый по жесткости наружный диаметр кольца:

Пример 1 . Для стального вала (рис.1) постоянного по длине сечения требуется: 1) определить значения моментов М 2 и М 3 , соответствующие передаваемым мощностям Р 2 и Р 3 , а также уравновешивающий момент М 1 ; 2) построить эпюру крутящих моментов; 3) определить требуемый диаметр вала из расчетов на прочность и жесткость, полагая по варианту (а) (б) - c =d 0 / d=0,8.

Принять: [ τ кр ] = 30 МПа ; [ φ 0 ] = 0,02 рад/м; Р 2 = 52 кВт; Р 3 = 50 кВт; ω = 20 рад/с; G = 8 10 4 МПа

Рис. 1 - Схема задачи

Решение:

1. Определяем внешние скручивающие моменты:

М 2 = Р 2 / ω = 52  10 3 / 20 = 2600 Н  м

М 3 = Р 3 / ω = 50  10 3 / 20 = 2500 Н  м

2. Определяем уравновешивающий момент М 1 :

М i z = 0; М 1 – М 2 – М 3 =0

М 1 = М 2 + М 3 = 5100 Н  м

3. Определяем крутящий момент по участкам вала:

М z I = М 1 = 5100 Н  м

М z II = М 1 – М 2 = 5100 – 2600 = 2500 Н  м

Строим эпюру крутящих моментов М z (рис. 2).

Рис. 2 - Эпюра крутящих моментов

4. Определяем диаметр вала из условий прочности и жесткости, принимая М z max = 5100 Н м (рис. 2).

а) Сечение вала круг.

Из условия прочности:

Принимаемd = 96 мм

Из условия жесткости:

Принимаем d = 76 мм

Требуемый диаметр получился больше из расчета на прочность, поэтому его принимаем как окончательный d = 96 мм.

б) Сечение вала - кольцо.

Из условия прочности:

Принимаем d = 114 мм

Из условия жесткости:

Принимаем d = 86 мм

Требуемые диаметры окончательно принимаем из расчетов на прочность:

Наружный диаметр кольца d = 114 мм

Внутренний диаметр коль ца d о = 0,8 d = 0,8 114 = 91,2 мм. Принимаем d о =92 мм .

Задача 1. Для стального вала (рис.3) постоянного поперечного сечения требуется: 1) определить значения моментов М 1 , М 2 , М 3 и М 4 ; 2) построить эпюру крутящих моментов; 3) определить диаметр вала из расчетов на прочность и жесткость, полагая по варианту (а) поперечное сечение вала - круг; по варианту (б) - поперечное сечение вала - кольцо, имеющее соотношение диаметров c =d 0 / d=0,7. Мощность на зубчатых колесах принять Р 2 = 0,5Р 1 ; Р 3 = 0,3Р 1 ; Р 4 = 0,2Р 1 .

Принять: [ τ кр ] = 30 МПа ; [ φ 0 ] = 0,02 рад/м; G = 8 10 4 МПа

Окончательное значение диаметра округлить до ближайшего четного (или оканчивающегося на пять) числа.

Данные своего варианта взять из таблицы 1

Указание. Полученное расчётное значение диаметра (в мм) округлить до ближайшего большего числа, оканчивающегося на 0, 2, 5, 8.

Таблица 1 - Исходные данные

Номер схемы на рисунке 3.2.5

Р 1

Варианты

рад/с

кВт


Рис. 3 - Схема задачи

Подобрать размеры поперечного сечения вала (рис. 1) по условию прочности . На участках от сечения 1 до сечения 3 и от сечения 5 до сечения 6 наружный диаметр вала по конструктивным соображениям должен иметь одинаковый размер.

На участке от сечения 1 до сечения 2 вал кольцевого поперечного сечения с n=d B /d=0,4. На участках от сечения 3 до сечения 5 вал подбирается только по условию прочности .

М = 1 кН∙м, [τ ] = 80 МПа.

Решение

Разбиваем вал на силовые участки , строим эпюру крутящего момента (рис. 1,б).

Определяем диаметры вала. На I, II и V участках наружный диаметр вала одинаков. Для них не возможно заранее указать сечение с наибольшим значением касательного напряжения, так как различные участки имеют различные типы поперечного сечения: I участок – кольцевое, II и V – сплошное круглое.

Приходится определять отдельно по условию прочности диаметры для каждого типа поперечного сечения по наиболее нагруженному силовому участку (то есть тому, на котором действует максимальный по абсолютной величине крутящий момент). Окончательно примем наибольший полученный диаметр.

Для участка с кольцевым сечением:

Для вала сплошного поперечного сечения

Окончательно принимаем наибольшее значение полученного диаметра, округленное до целого значения в большую сторону:

d 1 = d 2 = d 5 = 61 мм;

d B1 = n∙d 1 = 0,4∙61 = 24,4 мм.

Наибольшее действующее на этих участках напряжение:

Диаметр вала на III участке (М К3 = 5М = 5 кНм).

Лучшие статьи по теме