Как сделать свой бизнес успешным

Особенности дробления. Типы дробления бластул. По типу симметрии дробящегося яйца

Процесс дробления

Процесс дробления применяется для доведения минерального сырья (и других материалов) до необходимой крупности, требуемого гранулометрического состава или заданной степени раскрытия зерна. Применяются следующие способы разрушения:

· раздавливание, наступающее после перехода напряжений за предел прочности на сжатие (рис 1, а)

· раскалывание в результате расклинивания последующего разрыва кусков (рис 1, б)

· излом в результате изгиба (рис 1, в)

· срезывание, в котором материал подвергается деформации сдвига (рис 1, г)

· истирание кусков скользящей рабочей поверхностью. (рис 1, д)

· Удар (рис 1, е)

Перечисленные способы дробления являются общими для дробления и измельчения, однако эти процессы отличаются по своему технологическому назначению и месту в цепи последовательных операций обогатительных фабрик (далее ОФ). Условно считают, что при дроблении получают продукты крупнее 5 мм, а при измельчении - мельче 5 мм. Для дробления применяют дробилки, для измельчения - мельницы.

Дробление на ОФ является подготовительной операцией перед обогащением м служит для разъединения тесно сросшихся между собой зерен различных минералов, содержащихся в полезном ископаемом. Чем полнее раскрывается зерно, тем успешнее протекает последующее обогащение полезных ископаемых (далее ПИ).

Полного раскрытия минералов достичь не удается, т.к. для этого пришлось бы очень тонко измельчать руду перед обогащением. Крупность зерен, до которой необходимо дробить исходный материал перед обогащением, определяется размером вкрапленности полезных минералов и процессом, принятым для обогащения данного ископаемого. Переизмельчать минералы не следует, т.к. это удорожает процесс и ухудшает результаты обогащения. Эта крупность устанавливается опытным путем при исследованиях обогатимости ПИ.

Степень дробления

Степень дробления - это отношение размеров максимальных кусков или зерен исходного материала к размеру максимальных куском продукта.

Степень дробления показывает, во сколько раз уменьшился размер кусок при дроблении.

Таким образом, степень дробления вычисляется при отношении размеров предельных отверстий сит, через которые проходят куски дробимого материала и дробленого продукта.

Стадии дробления

В зависимости от крупности исходного материала и дробленого продукта, стадии дробления имеют названия:

· 1 стадия - крупное дробление

· 2 стадия - среднее дробления

· 3 стадия - мелкое дробление

В зависимости от требуемой крупности материала перед обогащением, его можно измельчать в одну, две или даже три последовательные стадии.


Рис.2.

Классификация дробилок

Щековые дробилки


Щековые дробилки разделяются на два основных класса: с простым и сложным движением подвижной щеки. Дробилки с простым движением подвижной щеки различаются между собой способом ее крепления и приводным механизмом. Различают дробилки с верхним подвесом щеки, с нижней шарнирной опорой, с кулачковым приводным механизмом, с кривошипно-шарнирным приводным механизмом. В дробилках со сложным движением подвижной щеки, последняя шарнирно подвешена на эксцентриковом приводном валу. Значительное вертикальное перемещение щек, обусловливающее их истирающее действие на куски материала, приводят к повышенному износу дробящих плит. Поэтому дробилки со сложным движением применяют преимущественно для малоабразивных материалов. Достоинства: их простота конструкции, компактность и небольшая масса.

На рис.4 изображена схема щековой дробилки со сложным движением щеки ЩДС. Станина дробилки сварная. Ее боковые стенки выполнены из стальных листов и соединены между собой передней стенкой 1 коробчатого сечения и задней балкой 2, являющейся одновременного корпусом регулировочного устройства 7. Над приемным отверстием укреплен защитный кожух 3. Подвижная щека 4 закреплена на эксцентриковой части приводного вала 5, в нижней части щеки имеется паз, куда вставляется вкладыш для упора распорной плиты 6. Другим концом распорная плита упирается во вкладыш регулировочного устройства, состоящего из ползуна 13 и двух винтов 14. Замыкающее устройство состоит их тяги 8 и цилиндрической пружины 9. Подвижная щека имеет в нижней части косой выступ, на который устанавливают дробящую футеровочную плиту 10. Неподвижная дробящая плита 11 опирается внизу на выступ передней стенки станины 1, а с боковых сторон зажата футеровочными плитами 12.

Введение

Технологическая часть

Выбор оборудования 1 ступени дробления

Дробилки, которые подходят для установки в 1 ступени дробления подбираем по исходным данным:

1. По пределу прочности материала при сжатии σ сж =50·10 6 Па

2. По максимальному размеру куска исходного материала δ н.мах =0,8м.

Выбор машины раздавливающего или ударного действия можно сделать ориентировочно по табл.1.

Таблица 1

ЩДС-12х15.

При ширине разгрузочной щели а =110мм производительность равна:

где V - величина производительности дробилки;

К р - коэффициент размолоспособности;

Изменение ширины разгрузочной щели;

а - ширина разгрузочной щели.

- принимаем 1 дробилку

0 55 110 165 220 δ, мм

Рис.2. Характеристика дисперсионного состава исходного материала

При величине зазора а =110мм максимальный размер частиц на выходе из дробилки, согласно рис.2 будет равен:

Степень измельчения равна:

Тогда при Кδ=1,2 (см. рис. 3.7) и G= 25,79 кг/с,

мощность двигателя дробилки будет:

Что не превышает величины N дв выбранной дробилки (N дв =160кВт)

Следовательно, принимаем 1 дробилку ЩДС-12х15с N дв =160 кВт (на 1 дробилку 160 кВт).

Сопоставляя эти данные, выбираем дробилку М-13-11.

Построим кривую дисперсионного состава материала на выходе из дробилки. Для этого вычислим величины, необходимые для расчета:

Окружную скорость ротора по вершинам молотков

Массу идеального молотка

Проведем расчет конечного размера частиц при трех значениях δ н:

1. 165 мм; 2. 110мм; 3. 55мм.

В первом случае δ н =165мм;

Во втором случае δ н =110мм;

В третьем случае δ н =55мм;


0 55 110 165 220 δ,мм

Рис.3. Характеристика дисперсионного состава исходного материала

По конечному размеру частиц после измельчения выбираем шаровую мельницу. В нее рекомендуется загружать материал δ н.мах ≤ 6·10 -3 м. из рис. 3 следует, что 20% материала, выходящего из дробилки, составляют частицы размером больше 6·10 -3 м, эту долю материала необходимо до измельчить до размера δ н.мах ≤ 6·10 -3 м.

Отобранную на грохоте крупную фракцию материала возвращаем на доизмельчение в молотковую дробилку М-13-11.

Тогда полная производительность дробилки составит:

Количество дробилок, необходимое для обеспечения исходной объемной производительности равно:

- принимаем 1 дробилку.

При δ к.ма x =14,6мм величина α составит:

Окончательно принимаем α=32мм.

Мощность двигателя дробилки будет:

Что не превышает величины N дв выбранной дробилки (N дв =130кВт). Следовательно, принимаем 1 дробилку М-13-11 с N дв =130 кВт.

Высота сбрасывания материала в дробилку:

Охрана окружающей среды

Природоохранные вопросы при производстве цемента и извести в первую очередь включают следующее:

Выбросы в атмосферу

Потребление энергии и топлива

Сточные воды

Образование твердых отходов

1. Требования к санитарной охране водных ресурсов.

1.Сброс сточных и дренажных (далее - сточных) вод, откачиваемых из шахт и разрезов, после использования в процессах обогащения на обогатительных и брикетных фабриках, а также хозяйственно-бытовых стоков в водоемы допускается только после их эффективной очистки и обеззараживания с лабораторным контролем взвешенных и растворенных в воде веществ. В проекте очистных сооружений должен быть представлен расчет времени отстаивания сточных вод с обоснованием применения (или отказа от применения) коагулянтов и флокулянтов. Не допускается ввод в действие технологического оборудования до пуска в эксплуатацию сооружений по очистке сточных вод.

2. Производительность сооружений по очистке вод должна рассчитываться на возможное увеличение мощности предприятий (не менее 20-летнего срока) в соответствии с требованиями СНиП "Водоснабжение. Наружные сети и сооружения. Нормы проектирования" и СНиП "Канализация. Наружные сети и сооружения. Нормы проектирования".

3. Схемы водоснабжения предприятий должны предусматривать организацию оборотных циклов использования воды в технических целях.

4. Сброс сточных вод предприятий в водоемы должен осуществляться при строгом соблюдении требований к качеству сбрасываемой воды у первого пункта водопользования ниже по течению в соответствии с СанПиН "Охрана поверхностных вод от загрязнений", СанПиН "Санитарные нормы предельно допустимого содержания вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования" и дополнений к нему, "Методическими указаниями по санитарной охране водоемов от загрязнения сточными водами предприятий угольной промышленности".

5. Санитарной охране подлежат реки, водохранилища, озера, ручьи, пруды, искусственные каналы, а также подземные воды, используемые для хозяйственно-питьевых, культурно-бытовых и бальнеологических целей.

6. Поверхностные сточные воды с территории предприятий и смывы с полов производственных помещений перед сбросом в водоемы должны подвергаться локальной очистке или направляться на общие очистные сооружения.

7. Очистные сооружения предприятий, должны соответствовать "Нормативным требованиям по проектированию и строительству предприятий, зданий и сооружений в условиях северной строительно-климатической зоны, вечномерзлых грунтов и отрицательных температур".

2. Требования к санитарной охране атмосферного воздуха и земельных ресурсов.

1. Санитарная охрана атмосферного воздуха в районах размещения предприятий известковой промышленности должна осуществляться в соответствии с СанПиН "Гигиенические требования к охране атмосферного воздуха населенных мест" , ГОСТ "Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями". Действующие предприятия должны иметь нормативы предельно допустимых выбросов, согласованные и утвержденные в установленном порядке.

2. Проекты эксплуатации, тушения и разработки горючего сырья должны быть разработаны в соответствии с отраслевыми инструкциями.

3. Сырьевые склады должны располагаться за пределами населенных пунктов и предприятий с подветренной (для ветров преобладающего направления) стороны к предприятию, жилым зданиям, зданиям общественного и коммунального назначения стороны.

4. Для предотвращения загрязнения атмосферного воздуха продуктами горения и пылью должны приниматься эффективные меры по предупреждению самовозгорания. Запрещается эксплуатация горящего сырья и подлежит обязательному тушению.

5. Во время тушения следует производить измерение концентраций оксида углерода и сернистого ангидрида на рабочих местах в начале каждой смены. При содержании вредных газов в количестве, превышающем допустимые нормы, должны приниматься меры, обеспечивающие безопасность работ.

6. Использование твердых отходов в отраслях промышленности, в том числе в стройиндустрии, возможно только с разрешения органов Госсанэпиднадзора.

7. При перевозке извести в железнодорожных вагонах и на платформах должны быть предусмотрены меры по предотвращению просыпей и сдувания пыли.

8. Запрещается складирование и выгрузка извести и породы в неустановленных местах при их вывозке канатными дорогами, автомобильным, конвейерным или рельсовым транспортом.

9. При ликвидации предприятия в Технико-экономическом обосновании по его закрытию должны предусматриваться меры и средства на устранение неблагоприятных экологических последствий прекращения деятельности.

Охрана труда

1.Техника безопасности

1. В соответствии с Руководством "Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса". Руководитель предприятия обязан обеспечить работников, занятых на производствах с вредными и опасными условиями труда, средствами коллективной и индивидуальной защиты, смывающими и обеззараживающими препаратами в соответствии с "Типовыми отраслевыми нормами бесплатной выдачи рабочим и служащим специальной одежды, специальной обуви и других средств индивидуальной защиты" и ГОСТом "Средства индивидуальной защиты работающих. Общие требования и классификация", обучить правилам их применения и контролировать использование. Применение СИЗ не должно заменять требований по разработке и осуществлению технических мероприятий по снижению уровней опасных и вредных производственных факторов до допустимых гигиенических нормативов.

2. Для защиты органов дыхания от пыли все лица, занятые на работах, где возможно содержание ее в воздухе выше уровня ПДК, должны быть обеспечены респираторами, соответствующими требованиям ГОСТа ССБТ "Средства индивидуальной защиты органов дыхания". Режимы применения респираторов должны устанавливаться с учетом концентрации пыли в воздухе рабочей зоны и времени пребывания в них работающих и согласовываться с органами Госсанэпиднадзора. Должны быть определены производственные операции, выполнение которых без респираторов не допустимо. Разрешается пользование респираторами только тех типов, технические характеристики которых согласованы с органами Госсанэпиднадзора.

3. Рабочие, подвергающиеся воздействию интенсивного шума, в том числе в подземных горных выработках, должны применять индивидуальные средства защиты, соответствующие требованиям ГОСТа "Средства индивидуальной защиты органов слуха. Общие технические условия". При выборе индивидуальных средств защиты необходимо учитывать спектральную характеристику акустических колебаний (Прил. 6).

4. Рабочие должны быть обеспечены средствами индивидуальной защиты от вибрации (антивибрационные рукавицы, обувь и др.). Средства индивидуальной защиты от вибрации должны соответствовать ГОСТу "Средства индивидуальной защиты рук от вибрации. Общие технические требования и методы испытаний" и ГОСТу "Обувь специальная виброзащитная. Общие технические требования".

5. Для защиты кожи от воздействия вредных веществ, высокой или низкой температуры поверхностей органов управления рабочие должны обеспечиваться защитными средствами, соответствующими ГОСТу ССБТ "Одежда специальная защитная. Средства индивидуальной защиты ног и рук. Классификация". В качестве СИЗ кожи рук от пыли и вредных веществ должны применяться рукавицы, перчатки, защитные мази и пасты, соответствующие требованиям ГОСТа ССБТ "Средства дерматологические защитные. Классификация. Общие технические требования".

6. Хранение, использование, ремонт, чистка и другие виды профилактической обработки специальной одежды, обуви и других средств индивидуальной защиты должны осуществляться в соответствии с требованиями "Инструкции о порядке обеспечения рабочих и служащих специальной одеждой, специальной обувью и другими средствами индивидуальной защиты". Вынос СИЗ с предприятия запрещается.

7. Водозащитная спецодежда и влажная спец-обувь должны просушиваться при температуре не выше 50 °С после каждой смены. Кожаная спец-обувь должна после просушки смазываться смягчающей мазью.

8. Спец-обувь должна подвергаться мойке с применением 5% раствора хлорамина Б или 1% раствора фитона в течение 15 мин. или другими допущенными к применению дезинфицирующими средствами. Санитарной обработке с использованием дезинфекционных средств должны также подвергаться респираторы, защитные каски, подтяжки и носки.

9. Спецодежда и спецобувь больных гнойничковыми заболеваниями кожи и грибковыми болезнями стоп и кистей должна подвергаться ежедневной дезинфекции 5% раствором хлорамина Б или другими дезинфицирующими средствами.

2. Требования безопасности во время работы

1. Дробильщик обязан работать в установленной спецодежде и обуви, использовать средства индивидуальной защиты: респиратор, вкладыши противошумные, защитную каску.

2. Дробильщик обязан: быть внимательным и выполнять требования установленных звуковых и световых сигналов; передвигаться по установленным проходам и переходным мостикам; содержать свое рабочее место в чистоте, не допуская загромождения его посторонними предметами; при сдаче смены докладывать сменному мастеру о неполадках в работе дробилки и мерах, принятых по их устранению, сделать запись в журнале приема-сдачи смены.

3. Запуск дробилки в работу производится дробильщиком через 1 - 2 мин. после подачи установленных звуковых или световых сигналов. При дистанционном централизованном управлении технологическим оборудованием запуск дробилки производится диспетчером завода с пульта управления. Перед запуском оборудования в работу подается предупредительный световой и звуковой сигнал. Дробильщик, получив сигналы, должен отойти на безопасное расстояние от оборудования. Условные обозначения подаваемых сигналов должны быть вывешены на рабочем месте дробильщика.

4. Пуск дробилки и ее эксплуатация производятся в соответствии с инструкцией по эксплуатации. При наличии при пуске непривычного шума, стука, указывающих на неисправность дробилки, дробилку следует выключить, сообщить мастеру и не включать до устранения неисправностей.

5. Снимать и устанавливать ограждения; подтягивать пружины, болты; смазывать подшипники вручную, надевать и снимать клиновые ремни; регулировать размер разгрузочной щели; производить очистку дробилки, осмотр механизмов; выполнять ремонтные работы допускается только после полной остановки дробилки, отключения от электросети электродвигателя, снятых предохранителях. Отключение от сети производить в диэлектрических перчатках, стоя на изолирующем коврике. На пусковом устройстве следует вывесить табличку "Не включать! Работают люди!".

6. Дробильщику во время работы дробилки запрещается: заглядывать в зев дробилки; производить осмотр механизмов вблизи движущихся частей; уходить без разрешения мастера со своего рабочего места.

7. В случае прекращения подачи электроэнергии дробильщик обязан отключить электродвигатель от сети и полностью очистить дробильную камеру от материала.

8. Дробильщик должен основное время находиться в помещении (кабине), обеспечивающем достаточный обзор зоны обслуживания, оборудованном пультом управления, телефоном. Если по условиям работы дробильщик находится вне кабины, то он обязан пользоваться средствами индивидуальной защиты: защитной каской, вкладышами противошумными, респиратором.

9. Большие недробимые куски камня нужно удалять из зева подъемными средствами со специальными приспособлениями. Извлекать застрявшие в рабочем пространстве дробилки куски породы вручную и дробить их кувалдами запрещается.

10. Для предотвращения аварийных ситуаций необходимо не допускать перегрузки дробилки, следить за работой централизованной смазки конусной дробилки, следить за состоянием шкива и маховика щековой дробилки.

11. При выполнении ремонтных работ на дробилках спуск дробильщика в рабочее пространство дробилки необходимо осуществлять с использованием лестниц и применением предохранительных поясов. При этом над загрузочным отверстием дробилки должен быть устроен временный настил, исключающий падение различных предметов на людей. Прикреплять предохранительный пояс следует только к постоянным, надежно укрепленным конструкциям. Места закрепления должны быть обозначены на конструкциях.

12. При выполнении слесарных работ дробильщик обязан пользоваться исправным инструментом. Кувалды, молотки должны быть прочно насажены на деревянные ручки. Гаечные ключи должны соответствовать размерам гаек и болтов. Наращивать ключ другим ключом запрещается. При необходимости следует пользоваться ключом с удлиненной рукояткой.

13. По окончании ремонта дробильщик должен убрать с дробилки инструмент, запчасти и другие предметы.

14. Пуск дробилки в работу после ремонта дробильщик должен производить под руководством мастера или бригадира, производившего ремонтные работы.

Технико-экономическая часть

При выборе предварительного оборудования для первой стадии дробления учитывалось:

Предел прочности материала при сжатии σ сж =50·10 6 Па;

Размер загружаемого куска δ н.мах, мм;

Минимальная ширина разгрузочной щели α, мм, с учетом регулирования Δα, мм;

Соответствие исходной производительности;

Минимальная мощность двигателя N дв .

Для первой ступени дробления подходят дробилки ЩДС-12х15; ККД-1000/150 и ДДЗ-16.

Таблица 8

Варианты дробилок для 1 ступени дробления

Сопоставляя эти данные, выбираем дробилку ЩДС-12х15, потому что другие 2 дробилки потребляют мощность в два раза больше чем выбранная и максимальный размер частиц на выходе из дробилки по отношению к другим.

Для второй ступени дробления материала подходят дробилки КСД-1750Гр; ЩДС-6х9; ДДЗ-6 и М-13-11.

Таблица 9

Варианты дробилок для 2 степени дробления

Сопоставляя эти данные, выбираем дробилку М-13-11 . Другие дробилки и проходят по мощности, но максимальный размер куска на выходе из дробилки имеет минимальное значение выбранная дробилка. В результате чего не требуется дополнительной ступени дробления.

Для второй стадии измельчения с требуемой величиной мощности (1,3…1,5)N шз =334…385,5кВт выбираем шаровую мельницу сухого помола ШБМ-287/470 с N дв = 410кВт, так как другие дробилки имеют большой запас мощности (ШБМ-287/410 с N дв = 650кВт и ШБМ-320/570 с N дв = 700кВт) или не проходят по мощности и масса загружаемых шаров меньше,чем требуемая.

Приложение.

Таблица 1

Введение

ДРОБЛЕНИЕ - процесс разрушения кусков руды, угля и другого твёрдого материала с целью получения требуемой крупности (более 5 мм), гранулометрического состава или степени раскрытия минералов.

Дробление основано на действии внешних сил - сжатии, растяжении, изгибе или сдвиге, которые проявляются в максимальной степени в ослабленных сечениях куска, вызванных дефектами его структуры (размером формой), слоистостью, пористостью и трещиноватостью. Для процессов дробления наиболее важные характеристики - прочность (крепость) и дробимость кусков. Для энергетической оценки дробления выдвинуто и используется в расчётах несколько гипотез: о пропорциональности элементарной работы дробления приращению площади поверхности куска или квадрату его диаметра; о пропорциональности элементарной работы деформации куска изменению его первоначального объёма или куба его диаметра; о пропорциональности элементарной работы, затрачиваемой на дробление куска, изменению его первоначального объёма и приращению площади поверхности куска о связи напряжения на концах трещин куска и критической длиной трещины; о пропорциональности элементарной работы дробления среднегеометрического приращению объёма и площади поверхности.

Предпочтительные области применения гипотез: при крупном дроблении (приращение поверхности мало) работу дробления определяют по гипотезе Кирпичёва; при мелком дроблении (измельчении, истирании) - по гипотезе Риттингера. Закон Бонда достаточно точно применим при среднем дроблении. Теория дробления позволяет количественно описывать процессы дробления в машинах различных типов и их параметры - работу дробления, мощность двигателя, производительность, наибольшие усилия дробления и т.п.

Дробление может быть осуществлено следующими методами: раздавливания, наступающего вследствие превышения напряжений деформации предела прочности материала на сжатие; раскалывания - из-за расклинивания (растяжения) и последующего разрыва куска; излома - из-за изгиба; срезывания - из-за сдвига; истирания, проявляющегося в малой степени - из-за сдвига и последующего срезывания; удара - из-за действия напряжений сжатия, растяжения, изгиба и сдвига. Раздавливание применяется, как правило, при крупном и среднем дроблении твёрдых горных пород и углей, раскалывание или удар - преимущественно для хрупких и вязких пород (углей, известняков, асбестовых руд и т.п.). Предел прочности кусков на растяжение в десятки раз меньше, однако по конструктивным соображениям в современной практике дробления основным разрушающим воздействием является раздавливание.

По виду реализации методов дробления его делят на механическое (наиболее распространённое), пневматическое, или взрывное, электрогидравлическое, электроимпульсное, электротермическое, аэродинамическое, по способу воздействия на материал - на статическое и динамическое. Статические способы механического дробления - раздавливание, раскалывание, излом. Проводят в щёковых, конусных и валковых дробилках. Динамические способы дробления - удар, истирание (роторные дробилки), раскалывание, раздавливание (стержневые дробилки-дезинтеграторы). По крупности конечного продукта выделяют крупное (100-350 мм), среднее (40-100 мм), мелкое дробление (5-40 мм). По технологическому назначению - подготовительное (для подготовки материала к обогащению или др. видам переработки), окончательное (когда продукты дробления являются товарными, например, при выпуске сортовых углей), избирательное (при котором один из компонентов материала, отличающийся меньшей прочностью, под действием одинаковой внешней силы разрушается интенсивнее другого, более прочного).

Процесс дробления обычно соединяют с предварительным грохочением, когда весь исходный материал сначала поступает на грохот, а в дробилку направляются лишь крупные куски, подрешётный продукт грохота уходит далее, минуя дробилку. Существуют открытый и замкнутый циклы дробления.

При открытом цикле дробления продукт проходит через дробилку только один раз. При замкнутом - продукт из дробилки поступает на грохот, недостаточно раздробленные куски вновь направляются в дробилку на дополнительное дробление, а мелкие - на последующую обработку. При замкнутом цикле дробления улучшается качество продукта (гранулометрический состав однороден), снижается расход энергии и износ частей дробилки. В зависимости от требуемой крупности готового продукта для получения высокой степени дробления применяют последовательно несколько стадий дробления: при дроблении руд цветных металлов, как правило, 2, 3 или 4, руд чёрных металлов и угля 2 или 3 стадии.

Развитие теории дробления связывается с уточнением закономерностей и конструктивной разработкой износоустойчивых машин и аппаратов с минимальными удельными энергозатратами дробления.

Технологическая часть

Выбор оборудования I стадии – дробления

Дробление – этомитотическое деление зиготы. Между делениями интерфаза отсутствует, а удвоение ДНК начинается в телофазу предыдущего деления. Не происходит также и рост зародыша, то есть объем зародыша не изменяется и величиной равен зиготе. Клетки, образовавшиеся в процессе дробления, называются бластомерами, а зародыш – бластулой. Характер дробления обусловлен типом яйцеклетки (рис. 3)

Наиболее простой и филогенетически самый древний тип дробления - полное равномерное дробление изолецитальных яиц. Бластула, образующаяся в результате полного дробления, называется целобластулой . Это однослойная

бластула с полостью в центре.

Бластула, образующаяся в результате полного, но неравномерного дробления, имеет многослойную бластодерму с полостью ближе к анимальному полюсу и называется амфибластулой.

Рис. 3. Типы яиц и соответствующие им типы дробления

Дробление

Полное (голобластическое) неполное (меробластическое)

Равномерное (изолец. яйца ланцетника, морского ежа,

кишечнополостных,

Неравномерное

(телолецит. яйца

Неравномерное асинхронное (изолец. яйца

млекопитающих)

Дискоидальное

(телолец. яйца птиц,

рыб, моллюсков, рептилий)

Поверхстное

(центролецит. яйца

членистоногих, в

частности, насекомых)

целобластула амфибластула стерробластула дискобластула перибластула

Схема 3

Неполное дискоидальное дробление заканчивается образованием бластулы, в которой бластомеры расположены только на анимальном полюсе, в то время как вегетативный полюс состоит из нерасчлененной желточной массы. Под слоем бластодермы в виде щели расположена бластоцель. Такой тип бластулы называется дискобластулой.

Особым типом дробления является неполное поверхностное дробление членистоногих. Их развитие начинается с многократного дробления ядра, расположенного в центре яйца среди желточной массы. Образовавшиеся при этом ядра перемещаются к периферии, где расположена бедная желтком цитоплазма. Последняя распадается на бластомеры, которые своим основанием переходят в неразделенную центральную массу. Дальнейшее дробление ведет к образованию бластулы с одним слоем бластомеров на поверхности и желтком внутри. Такая бластула называется перибластулой .

Необходимо особо сказать о дроблении яиц млекопитающих. В яйцах млекопитающих мало желтка. Это алецитальные или олиголецитальные яйца по количеству желтка, а по распределению желтка по яйцеклетке - это гомолецитальные яйца. Дробление у них полное, но неравномерное, уже на ранних стадиях дробления наблюдается различие бластомеров по их величине и по окраске: светлые располагаются по периферии, темные в центре. Из светлых клеток образуется окружающий зародыш трофобласт, клетки которого выполняют вспомогательную функцию и непосредственно в формировании тела зародыша не участвуют. Клетки трофобласта растворяют ткани, благодаря чему зародыш внедряется в стенку матки. Далее клетки трофобласта отслаиваются от зародыша, образуя полый пузырек. Полость трофобласта заполняется жидкостью, диффундирующей в нее из тканей матки. Зародыш в это время имеет вид узелка, расположенного на внутренней стенке трофобласта. Бластула млекопитающих имеет небольшую центрально расположенную бластоцель и называется стерробластулой . В результате дальнейшего дробления зародыш имеет форму диска, распластанного на внутренней поверхности трофобласта.

Таким образом, дробление зародышей различных многоклеточных животных хотя и идет по-разному, но в конечном счёте заканчивается тем, что оплодотворенная яйцеклетка (одноклеточная стадия развития) в результате дробления превращается в многоклеточную бластулу. Наружный слой бластулы называется бластодермой , а внутренняя полость - бластоцелью или первичной , полостью , где накапливаются продукты жизнедеятельности клеток.

Существует несколько типов классификации процесса дробления.

По характеру образования и расположению бластомеров:

Полное (голобластическое) - характерно для зигот, содержащих мало желтка (мезо- и изолецитальные яйца), при этом борозды дробления проходят через все яйцо, а имеющийся у них желток включается в вегетативные бластомеры;

Неполное (меробластическое) - характерно для зигот, содержащих большие запасы белков желтка (полилецитальные яйца), при этом борозды дробления не проникают в богатую желтком область цитоплазмы.

В зависимости от размеров образовавшихся бластомеров:

равномерное - бластомеры на анимальном и вегетативном полюсе имеют одинаковые размеры;

неравномерное - на анимальном полюсе сосредоточены более мелкие бластомеры, чем на вегетативном.

По скорости формирования бластомеров:

синхронное - при одинаковой скорости образования бластомеров на обоих полюсах зиготы;

асинхронное - на анимальном полюсе скорость образования бласто­меров выше, чем на вегетативном.

Выделяют четыре основных типа голобластического дробления . Данная классификация основана на взаимном пространственном расположении бластомеров:

Радиальное;

Спиральное;

Билатерально-симметричное;

Неправильное (анархическое).

Радиальный тип дробления присущ голобластическим хордовым (ланцетник, круглоротые, осетровые рыбы, амфибии), иглокожим и некоторым другим группам.

При этом типе дробления бластомеры разных широтных ярусов располагаются, по крайней мере на ранних стадиях, довольно точно один над другим, так что полярная ось яйца служит осью поворотной симметрии.

Радиальный равномерный тип дробления характерен для яиц иглокожих (рис. 23).

У яйца лягушки наблюдается радиальный неравномерный тип дробления. Борозда первого деления дробления еще не завершила разделения богатой желтком цитоплазмы вегетативного полушария, а борозды второго деления уже закладываются вблизи от анимального полюса. Из-за большой концентрации желтка в вегетативной области борозды третьего деления дробления располагаются значительно ближе к анимальному полюсу (рис. 24).

В результате возникают область быстро делящихся бластомеров вблизи анимального полюса и область более медленно делящихся бластомеров вегетативного полюса.






Спиральный тип дробления характеризуется утерей элементов симметрии уже на стадии четырех, а иногда и двух бластомеров и присущ беспозвоночным (моллюски, кольчатые и ресничные черви), объединяемым в группу Spiralia.

Свое название этот тип дробления получил из-за того, что при взгляде с анимального полюса последовательно отделяющиеся четверки (квартеты) бластомеров поворачиваются относительно анимально-вегетативной оси то в правую, то в левую сторону, как бы образуя при наложении друг на друга спираль (рис. 25).

Знак спирального дробления, его дексио-(право-) или лео-(лево-) тропность, т. е. «закрученность», определяется геномом матери данной особи. Оно во многом отличается от радиального типа дробления.



Во-первых, яйца не делятся параллельно или перпендикулярно анимально-вегетативной оси. Плоскости делений дробления ориентированы наклонно, что приводит к спиральному расположению дочерних бластомеров.

Во-вторых, число контактов между клетками больше, чем при радиальном дроблении. В-третьих, зародыши со спиральным типом дробления проходят меньше делений до начала гаструляции. Возникающие таким образом бластулы обычно не имеют бластоцели (стерробластула).

Билатеральный тип дробления (круглые черви, оболочники) характеризуется наличием одной плоскости симметрии. Наиболее примечательная особенность этого типа дробления заключается в том, что плоскость первого деления устанавливает единственную плоскость симметрии зародыша (рис. 26).

Каждое последующее деление ориентируется по отношению к этой плоскости симметрии так, что половина зародыша по одну сторону от первой борозды представляет собой зеркальное отражение половины зародыша по другую ее сторону.


рис. 27. Анархическое дробление (по Токину, 1987)

При билатеральном типе дробления формируется одна плоскость симметрии: первая борозда проходит экваториально, далее анимальный бластомер делится меридиональной бороздой, а вегетативный - широтной. В результате получается Т - образная фигура из четырех бластомеров, не обладающая поворотной симметрией.

Путем поворота вегетативной пары бластомеров Т-образная фигура преобразуется в ромбическую. Этот поворот происходит в промежутке между делениями, в интерфазе.

При этом они могут распадаться, например под ударами волн, но из отдельных участков образуются полноценные зародыши. В результате плотного объединения бластомеров друг с другом в конце дробления образуется морула.

Основными типами меробластического дробления являются:

Поверхностное;

Дискоидальное.

При поверхностном дроблении после слияния пронуклеусов ядро зиготы делится на много ядер, которые с небольшим количеством цитоплазмы по цитоплазматическим мостикам переходят во внешний слой свободной от желтка цитоплазмы (периплазму) и равномерно там распределяются

(речь идет о центролецитальных яйцеклетках). Здесь ядра еще несколько раз синхронно делятся, располагаясь довольно близко друг к другу (рис. 28).

На этой стадии, еще до возникновения клеточных перегородок (так называемой синцитиальной бластодермы), ядра окружаются особыми структурами из микротрубочек, затем деление ядер становится асинхронным, между ними формируются клеточные перегородки и образуется базальная мембрана, отделяющая периплазму от центральной массы желтка. Борозды дробления появляются, но они не заходят глубоко в яйцо. Возникший поверхностный слой клеток называется клеточной бластодермой . Этот тип дробления характерен для большинства насекомых.



Первые две борозды проходят перпендикулярно друг другу, но далее строгий порядок прохождения борозд нарушается. При этом на бластомеры делится лишь тонкий диск цитоплазмы (бластодиск), расположенный на анимальном полюсе.

Выбор способов дробления.

Способ дробления горной породы зависит от физико-механических свойств дробимого материала и крупности его кусков. Способность горных пород противостоять разрушению зависит от прочности, наличия трещин в кусках, способов воздействия на них разрушающих усилий. Наибольшее сопротивление оказывают горные породы раздавливанию, меньшее - изгибу и особенно растяжению.

В настоящее время применяют дробилки, работающие главным образом по принципу раздавливания и удара при добавочных истирающих и изгибающих воздействиях на дробильный материал.

Технологические схемы камнедробильных заводов (КДЗ) многообразны и зависят в первую очередь от прочности камня и загрязнения вредными примесями. При выборе технологической схемы производства на КДЗ учитывают тип перерабатываемой горной породы (рис. 29.1):

I - однородные магматические горные породы (граниты, диориты, сиениты и др.) с пределом прочности при сжатии 600 МПа и более, метаморфические (осадочные) породы с прочностью 60...250 МПа;

II - прочные однородные осадочные породы с пределом прочности при сжатии 60...200 МПа;

III - неоднородные малоабразивные породы с прочностью от 10 до 150 МПа с содержанием труднопромываемых включений.

Степень дробления и измельчения.

Количественной характеристикой процесса дробления служит степень дробления, показывающая, во сколько раз уменьшились куски материала при дроблении.

Со степенью дробления связаны расходы энергии и производительность дробилок.

Степень дробления определяется по формуле

где D max - наибольший диаметр куска до дробления; d max - наибольший диаметр куска после дробления.


Рис. 29.1.

Для конкретных дробилок в технических паспортах приводится график выходов сортов щебня в зависимости от ширины выходной щели дробилки для условно принятой плотности горной породы.

Получение высоких степеней дробления в одной дробилке практически невозможно, поскольку каждая дробилка работает только при ограниченной степени дробления. Рационально материал от большего размера до требуемого дробить в нескольких последовательно расположенных дробилках (рис. 29.2).

Рис. 29.2. I, II, III - одно-, двух- и трехстадийные:

1 - грохот; 2 - конусная дробилка; 3 - щековая дробилка; 4 - валковая дробилка

Степень дробления, получаемую в каждой стадии, называют частной, во всех стадиях - общей степенью дробления.

В материалах, поступающих на дробление, всегда имеются куски мельче того размера, до которого идет дробление в данной стадии. Такие куски выделяют из исходного материала исходя из принципа «не дроби ничего лишнего». Дробилки могут работать в открытом или замкнутом цикле. При открытом цикле материал проходит через дробилку один раз и в конечном продукте всегда присутствует некоторое количество кусков избыточного размера. При замкнутом цикле материал неоднократно проходит через дробилку. Раздробленный материал подается на грохот, выделяющий из него куски избыточного размера, которые возвращаются для повторного дробления в ту же или вторичную дробилку. На практике наибольшеее распространение получило двухстадийное (двухступенчатое дробление).

Дробление каменных материалов производится в специальных дробилках, мельницах и дробильно-сортировочных установках.

По конструкции и способу дробления различают дробилки: щеко- вые, конусные, гирационные, ударные (молотковые и роторные).

По степени измельчения мельницы подразделяются на струйные, вибрационные и шаровые.

Щековые дробилки отличаются простотой конструкции и относительно несложным уходом при эксплуатации. В них измельчение происходит в пространстве между двумя щеками при сравнительно медленном нарастании давления. Щековые дробилки подразделяются по характеру движения подвижной щеки на два класса: дробилки с простым (по закону маятника) и сложным (эллипсоидным) движением подвижной щеки относительно оси подвеса. Щековые дробилки - прочные и надежные механизмы, используемые в качестве оборудования первичного дробления. К недостаткам щековых дробилок следует отнести большое количество движущихся деталей, что предопределяет устройство массивных фундаментов для их монтажа.

В последнее время появились усовершенствованные модели щековых дробилок - вибрационные щековые дробилки.

Конусные дробилки измельчают горную породу путем совместного воздействия истирания и сжатия материала между двумя поверхностями в камере дробления.

Основное действие конусной дробилки - раздавливание в сочетании с размолом кусков при изгибе, возникающем, когда кусок зажат между вогнутой поверхностью чаши и выпуклой поверхностью дробящего конуса. Конусные дробилки используются для мелкого дробления на второй и третьей стадиях измельчения. Они особенно эффективны для изготовления щебня из гравия. Модификации конусных дробилок могут использоваться для получения щебня кубовидной формы.

Гирационные дробилки оборудованы гидравлической системой, регулирующей ширину разгрузочной щели, влияющей на крупность продукта. В сравнении с конусными вторичными дробилками гирацион- ная дробилка имеет камеру дробления, предназначенную для приема питающего материала относительно большего размера по сравнению с диаметром подвижного конуса.

Молотковые и роторные дробилки относятся к дробилкам ударного действия. В молотковых дробилках камень измельчается силой ударов, нанесенных молотками. Они служат для дробления известняков и хрупких каменных материалов с прочностью на сжатие до 150 МПа.

В роторных дробилках материал разрушается за счет кинетической энергии жестко закрепленных на роторе движущихся тел. Промышленность выпускает однороторные и двухроторные дробилки. Производительность двухроторных дробилок выше, чем однороторных, в 1,5 раза.

Рис. 29.3. а - с использованием конусной дробилки; б - с использованием параллельно работающих конусной и ударной дробилок; в - с использованием последовательно работающих конусной и ударной дробилок

В настоящее время большое внимание уделяется производству щебня узких фракций кубовидной формы. Для получения щебня узких фракций кубовидной формы следует в качестве исходного материала использовать щебень из изверженных горных пород фракций 20...70,

  • 40.. .70 и 20...40 мм. Целесообразнее использование фракций щебня
  • 20.. .40 мм, в процессе переработки которого получается меньшее количество отсевов дробления фракций 0...5 мм.

Получение щебня кубовидной формы осуществляется на специальных дробильно-сортировочных установках, комплектация которых зависит от вида и крупности исходной породы, количества и номинального размера фракций щебня в готовой продукции, содержания зерен пластинчатой и игловатой (лещадной) формы в готовой продукции и требуемой производительности дробильно-сортировочного оборудования (рис. 29.3).

Дробильно-сортировочная установка при содержании зерен пластинчатой и игловатой формы до 10... 12% должна включать в свой состав бункер-питатель, две параллельно работающие дробилки (специальную конусную и ударного действия) и виброгрохот (см. рис. 29.3, б).

При уменьшении зерен пластинчатой и игловатой (лещадной) формы в готовой продукции до 5...7% можно рекомендовать схему дробильно-сортировочной установки с использованием последовательно работающих специальной конусной и ударной дробилок (см. рис. 29.3, в).

Лучшие статьи по теме